Sugar levels regulate tryptophan-dependent auxin biosynthesis in developing maize kernels.
نویسندگان
چکیده
The maize (Zea mays) Miniature1 (Mn1) locus encodes the cell wall invertase INCW2, which is localized predominantly in the basal endosperm transfer layer of developing kernels and catalyzes the conversion of sucrose into glucose and fructose. Mutations in Mn1 result in pleiotropic changes, including a reduction in kernel mass and a recently reported decrease in indole-3-acetic acid (IAA) levels throughout kernel development. Here, we show that mn1-1 basal kernel regions (pedicels and basal endosperm transfer layer) accumulate higher levels of sucrose and lower levels of glucose and fructose between 8 and 28 d after pollination when compared with the wild type, whereas upper regions of mn1 accumulate similar or increased concentrations of sugars. To determine the cause of the reduction in IAA accumulation, we investigated transcript levels of several potential IAA biosynthetic enzymes. We demonstrate that reduced IAA levels most closely correspond to reduced transcript levels of ZmYUCCA (ZmYUC), a newly identified homolog of the Arabidopsis (Arabidopsis thaliana) gene YUCCA. We further demonstrate that ZmYUC catalyzes the N-hydroxylation of tryptamine and that sugar levels regulate transcript levels of ZmYUC, both in in vitro-cultured kernels and in a promoter-reporter fusion in Arabidopsis. These results indicate that developing seeds may modulate growth by altering auxin biosynthesis in response to sugar concentrations.
منابع مشابه
Auxin biosynthesis in maize kernels.
Auxin biosynthesis was analyzed in a maize (Zea mays) kernel culture system in which the seeds develop under physiological conditions similar to the in vivo situation. This system was modified for precursor feeding experiments. Tryptophan (Trp) is efficiently incorporated into indole-3-acetic acid (IAA) with retention of the 3, 3' bond. Conversion of Trp to IAA is not competed by indole. Labeli...
متن کاملvanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize.
Auxin plays a fundamental role in organogenesis in plants. Multiple pathways for auxin biosynthesis have been proposed, but none of the predicted pathways are completely understood. Here, we report the positional cloning and characterization of the vanishing tassel2 (vt2) gene of maize (Zea mays). Phylogenetic analyses indicate that vt2 is a co-ortholog of TRYPTOPHAN AMINOTRANSFERASE OF ARABIDO...
متن کاملA role for flavin monooxygenase-like enzymes in auxin biosynthesis.
Although auxin is known to regulate many processes in plant development and has been studied for over a century, the mechanisms whereby plants produce it have remained elusive. Here we report the characterization of a dominant Arabidopsis mutant, yucca, which contains elevated levels of free auxin. YUCCA encodes a flavin monooxygenase-like enzyme and belongs to a family that includes at least n...
متن کاملThe Nitrilase ZmNIT2 converts indole-3-acetonitrile to indole-3-acetic acid.
We isolated two nitrilase genes, ZmNIT1 and ZmNIT2, from maize (Zea mays) that share 75% sequence identity on the amino acid level. Despite the relatively high homology to Arabidopsis NIT4, ZmNIT2 shows no activity toward beta-cyano-alanine, the substrate of Arabidopsis NIT4, but instead hydrolyzes indole-3-acetonitrile (IAN) to indole-3-acetic acid (IAA). ZmNIT2 converts IAN to IAA at least se...
متن کاملBioinformatics Analysis of Phylogeny and Transcription of TAA/YUC Auxin Biosynthetic Genes
Auxin is a main plant growth hormone crucial in a multitude of developmental processes in plants. Auxin biosynthesis via the tryptophan aminotransferase of arabidopsis (TAA)/YUCCA (YUC) route involving tryptophan aminotransferases and YUC flavin-dependent monooxygenases that produce the auxin indole-3-acetic acid (IAA) from tryptophan is currently the most researched auxin biosynthetic pathway....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 153 1 شماره
صفحات -
تاریخ انتشار 2010